2021 Annual Drinking Water Quality Report Southwest MS Community College PWS#: 0570011 June 2022

We're Pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Miocene Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to be identified with potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for SMCC have received moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Amy E. Cooley at (601)276-2016. We want our valued customers to be informed about their water utility. This report will be posted In the Administration Building as well as on the college website at <u>www.smcc.edu</u>, under Public Notices.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2021. In cases where monitoring wasn't required in 2021, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials, and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we've provided the following definitions:

Action Level – is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is no convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts Per Million (ppm) or Milligrams Per Liter (mg/l) – one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts Per Billion (ppb) or Micrograms Per Liter – one part per billion corresponds to one minute in 2,000 years or a single penny in \$10,000,000.

TEST RESULTS									
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measurement	MCLG	MCL	Likely Source of Contamination	
Inorganic	Contamiı	nants							
Antimony, Total	N	2019*	0.0005	No Range	ppm	0	0.006	Discharge from refineries; fire retardants; ceramics; electronics; solder	
Arsenic	N	2019*	0.0005	No Range	ppm	0	0.010	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production	
Barium	N	2019*	0.0349	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
Beryllium, Total	N	2019*	0.0005	No Range	ppm	0	0.004	Discharge from metal refineries and coal burning factories; discharge from electrical, aerospace, and defense industries	
Cadmium	N	2019*	0.0005	No Range	ppm	0	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	
Chromium	N	2019*	0.0008	No Range	ppm	0	0.1	Discharge from Steel and Pulp mills; erosion of natural deposits	
Fluoride	N	2019*	0.1	No Range	ppm	0	4	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	
Lead	N	2021	0.002	No Range	Mg/L	0	0.015	Corrosion of household plumbing systems, erosion of natural deposits	
Copper	N	2021	0.0	No Range	Mg/L	0	1.3	Corrosion of household plumbing systems; erosion of natural deposits	
Mercury	Ν	2019*	0.0005	No Range	ppm	0	0.002	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	
Nitrate (as Nitrogen)	N	2021	0.338	No Range	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage, erosion of natural deposits	

Nitrite	N	2021	0.02	No Range	ppm	1	1	Runoff from fertilizer use; leakage from septic tanks; sewage; erosion of natural
								Runoff from fertilizer use:
Nitrate- Nitrite	N	2021	0.338	No Range	ppm	10	10	leakage from septic tanks; sewage; erosion of natural deposits
								Discharge from petroleum
Solonium	N	2019*	0.0005	No Range	ppm	0	0.05	refineries; erosion of natural
Selellium								deposits; discharge from mines
Thallium, Total	N	2019*	0.0005	No Range	ppm	0	0.002	Leaching from ore-processing sites; discharge from electronics; glass and drug factories
Cyanide	N	2019*	0.015	No Range	ppm	0	0.2	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Combined								Leaching from soil and rocks,
Uranium	N	2021	0.5	No Range	ppb	0	30	releases from processing plants
Disinfectio	on By-Pro	ducts						
Bromo-	-							Disinfection byproduct formed
dichloro-	Ν	2021	1.0	No Range	ppb	0	0	when chlorine or other
methane								disinfectants are used to treat
								drinking water
Bromoform	N	2021	1.0	No Pango	nnh	0	0	Disinfection byproduct formed
ыопоютп	IN	2021	1.0	NO Kange	php	0	0	disinfectants are used to treat
								drinking water
								Disinfection byproduct formed
Chloroform	Ν	2021	1.0	No Range	ppb	0	0	when chlorine or other
								disinfectants are used to treat
								drinking water
Dibromo-	Ν	2021	1.0	No Bange	nnh	0	0	when chlorine or other
chloro-		2021	1.0	No Nange	660	0	Ŭ	disinfectants are used to treat
methane								drinking water
							MR	
Chlorine	Ν	2021	2.10	1.00 MG/L to	MG/L	0	DL=	Water additive used to control
				2.77 MG/L			4.0	microbes
								Disinfection hyproduct that
Total								occurs from the reaction of
Haloacetic	Ν	2021	1.0	No Range	ppb	0	0	chlorine and naturally occurring
								organic and inorganic matter in
(TAAS)								the water source
								Disinfection byproduct that
ттым	Ν	2021	1.0	No Pango	nnh	0	0	occurs from the reaction of
111111	IN	2021	1.0	No Kange	ppb	0	0	organic matter in the water
								source
Dibromo								Formed as a byproduct during
acetic Acid	N	2021	1.0	No Range	pph	0	0	disinfection of water by
DBAA					~ 4 4			chlorination in the presence of
								organic matter and bromide

Dichloro- Acetic Acid DCAA	N	2021	1.0	No Range	ppb	0	0	Disinfection byproduct formed when chlorine or other disinfectants are used to treat drinking water
Monobromo -acetic Acid MBAA	N	2021	1.0	No Range	ррb	0	0	Disinfection byproduct formed when chlorine or other disinfectants are used to treat drinking water
Monochloro -acetic Acid MCAA	N	2021	1.0	No Range	ppb	0	0	Disinfection byproduct formed when chlorine or other disinfectants are used to treat drinking water
Trichloro- acetic Acid TCAA	N	2021	1.0	No Range	ppb	0	0	Disinfection byproduct formed when chlorine or other disinfectants are used to treat drinking water
VOC								
1,2,4- Trichloro- benzene	N	2016*	0.5	No Range	ppb	0	70	Discharge from textile finishing factories
CIS-1,2- Dichloro- ethylene	N	2016*	0.5	No Range	ppb	0	70	Discharge from industrial chemical factories
Xylenes, Total	N	2016*	0.5	No Range	ppb	0	1000	Discharge from petroleum factories; discharge from chemical factories
Dichloro- methane	N	2016*	0.5	No Range	ppb	0	5	Discharge from drug and chemical factories
O-Dichloro- benzene	N	2016*	0.5	No Range	ppb	0	600	Discharge from industrial chemical factories
P-Dichloro- benzene	N	2016*	0.5	No Range	ppb	0	75	Discharge from industrial chemical factories
Vinyl Chloride	N	2016*	0.5	No Range	ppb	0	2	Leaching from PVC pipes; discharge from plastic factories
1,1- Dichloro- ethylene	N	2016*	0.5	No Range	ppb	0	7	Discharge from industrial chemical factories
TRANS-1,2- Dichloro- Ethylene	Ν	2016*	0.5	No Range	ppb	0	100	Discharge from industrial chemical factories
1,2- Dichloro- ethane	N	2016*	0.5	No Range	ppb	0	5	Discharge from industrial chemical factories
1,1,1- Trichloro- ethane	N	2016*	0.5	No Range	ppb	0	200	Discharge from metal degreasing sites and other factories

Carbon Tetra- chloride	N	2016*	0.5	No Range	ppb	0	5	Discharge from industrial chemical factories
1,2- Dichloro- propane	N	2016*	0.5	No Range	ppb	0	5	Discharge from industrial chemical factories
Trichloro- ethylene	N	2016*	0.5	No Range	ppb	0	5	Discharge from metal degreasing sites and other factories
1,1,2- Trichloro- ethane	N	2016*	0.5	No Range	ppb	0	5	Discharge from industrial chemical factories
Tetrachloro- ethylene	N	2016*	0.5	No Range	ppb	0	5	Discharge from factories and dry cleaners
Chloro- benzene	N	2016*	0.5	No Range	ppb	0	100	Used in pesticide formation
Benzene	N	2016*	0.5	No Range	ppb	0	5	Byproducts of oil refining processes
Toluene	N	2016*	0.5	No Range	ppb	0	1000	Discharge from petroleum factories
Ethyl- benzene	N	2016*	0.5	No Range	ppb	0	700	Found in natural coal tar and petroleum, inks, insecticides, and paints
Styrene	N	2016*	0.5	No Range	ppb	0	100	Discharge from rubber and plastic factories; leaching from landfills

*Most recent samples

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact (601)576-7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man-made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800)426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline at (800)426-4791.

Southwest MS Community College works around the clock to provide top quality water to every tap. We ask all of our consumers to help protect our water sources, which are the heart of our community, our way of life and our children's future.